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(" offline Map Building

- Extract visual features

- Find 3D location of features

- Subsample map considering
view-point robustness

Abstract—This paper reports on a method for tracking a
camera system within an a priori known map constructed
from co-registered 3D light detection and ranging (LIDAR) and
omnidirectional image data. Our method pre-processes the raw
3D LIDAR and camera data to produce a sparse map that can
scale to city-size environments. From the original LIDAR and
camera data we extract visual features and identify those that

are most robust to varying viewpoint. This allows us to include Full Sensor Suite L
only the visual features that are most useful for localization Collects Data
in the map. Additionally, we quantize the visual features using Professional IMU, Differential GPS,

a vocabulary tree to further reduce the map's le size. We Omnidirectional Camera & 3D LIDAR
then use vision-based localization to track the vehicle's motion
through the map. We present results on urban data collected
with Ford Motor Company's autonomous vehicle testbed. In our e

experiments the map is built using urban data from winter 2009,
and localization is performed using data collected in fall 2010
and winter 2011. This demonstrates our algorithm's robustness

to temporal changes in the environment. srumerited amera System City Scale
l. INTRODUCTION camera, orientation sensor & GPS Map of Feature Points
Vehicles capable of autonomous navigation in urban env ,' K . N
ronments typically rely on expensive perception and navig: Online Localization
tion sensors and signi cant amounts of computing powel | - Predict camera motion using a constant velocity model
Consider, for example, the vehicles used in the DARP; | -Extractvisual features
Urban Challenge [1]. Most of these vehicles used expensi | - Data association from map to visual features

inertial navigation sensors, 3D light detection and rangin | -Camera filter update o
(LIDAR) scanners capable of measuring a million range - Orientation & GPS sensor filter update (if available)
per second and multi-view camera systems. The rich da ~ g
provided by these sensors allowed the vehicles to opere Estimated Location In Map
autonomously in their environment. Unfortunately, such a
sensor suite costs hundreds of thousands of US dollamg. 1. Algorithm overview. Data collected using a fully instrumented
Clearly, this prohibits widespread use of this technology vehicle is used to build a fused modality map of the environment. Then a
| h_’ d hat it i ibl |i lesser instrumented camera system, for example a camera with an attitude
n t !S paper we demonstrate that it Is possi e to colleknsor and GPS, localizes itself within the map (possibly years later).
the vision and LIDAR data once for an area using a fully
instrumented vehicle, and afterward localize to the data using
a low cost camera system. This allows us to extend some of _ ) _
the capabilities of advanced autonomous vehicles to mud@sition, which can be used to bootstrap the visual tracking
lower cost instrumented camera systems. and to reinitialize the system after regions where tracking
stage in which the map is constructed from the raw data prffCgress in computer vision may allow for (re)initialization
vided by the full sensor suite ar(d) an online localization USing purely visual methods.) Instrumented camera systems,
stage where the instrumented camera system localizes its¢ffich combine a camera, orientation sensor, and GPS are
within the a priori map (Fig. 1). becoming ubiquitous. For example, such integrated systems
At a minimum, the low cost system would consist ofare typically found in modern smart phones.
a single monocular camera. However, the addition of an With this work we seek to address several challenges.
orientation sensor and global positioning system (GPS) cdtirst, because the map is only collected once and then
provide a bounded estimate of the camera’s orientation ahater used for localization, the algorithm must be robust to




dynamic changes in the environment. Second, because tbealization and map building are performed simultaneously
camera trajectory may not be the same between mappiby the same camera; however, in our application the map
and localization, we need to be robust to view point changéuilding data and the localization data will be collected at
To account for this, we speci cally build the map to includedifferent times with a different trajectory and possibly a
the most viewpoint-robust visual features. Finally, we see#lifferent camera. We expect that patch based methods will
to produce a map that is scalable to very large areas. Tmst provide a suf cient level of robustness to the variance
requires that our map representation be suf ciently compactuse by the dynamic environment and changes in view
so that the map can be easily stored. point. Therefore, we have chosen to use robust descriptors

In our experiments, we consider a system with fousuch as scale invariant feature transform (SIFT) [6], [7]
monocular cameras, GPS, and an attitude sensor, which wstead of image patches.
use to localize an automobile traveling through an urban Localization-by-recognition methods, [8], [9], [10], seek
environment. We present results in which the map is buitb localize the camera by recognizing the current view with
using data from fall 2009 while localizing to the maprespect to a set of known locations. This is often performed
with data collected in fall 2010 and winter 2011. Thiswith little or no prior information on the pose of the camera.
demonstrates the ability of our system to provide a locatiolhese methods have been addressed in the past by the
estimate that is signi cantly more accurate than that of @omputer vision community. It is common practice to model
consumer-grade GPS while dealing with large changes inthe locations as a collection of visual vocabulary (quantized
dynamic environment. visual feature descriptors). This “bag of words” model [11]

In Section Il we discuss how our algorithm relates tds then used to determine which locations have a similar
existing work in the elds of vision-based simultaneousdistribution of features compared to the current image.
localization and mapping (SLAM), place recognition, andHypothesis locations are geometrically veri ed, which also
visual localization. In Section Ill we provide an overviewserves to localize the camera with respect to that location.
of our system. Sections IV and V explain in detail how the Recently, two closely related works, [10], [12], attempt to
map is generated and our proposed method for localizatiolocalize a camera in a map created by structure-from-motion.
Experimental results are presented in Section VI. Finally, wehese methods are similar to our approach as they seek to
discuss the results and future work in Section VII. localize the camera with respect to arpriori known map
of 3D feature points, yet differ from our proposed method
in map representations and localization methods.

We attempt to solve the problem of camera localization Irschara et al. [10] propose a method that represents the
within an a priori known map. Previous work in visual map as a set of spatially sampled “synthetic views' created
localization can be roughly split into two categories: trackindgy projecting the 3D feature points into evenly spaced
methods and localization-by-recognition methods. synthetic cameras. They then use image-to-image recognition

Tracking methods, which are common in the SLAMtechniques to compute the camera's pose with respect to a
and robotics communities, use a strong pose prior over synthetic view—thus localizing the camera. This differs from
small baseline to perform visual localization of sequentiabur proposed method as we perform direct matching between
images. Notable examples that address the full SLAM prolthe image and the map's 3D feature points. Additionally,
lem include the works by Davison et al. [2], Eade andinlike our proposed method, Irschara et al. do not make
Drummond [3] and Klein and Murray [4]. Davison usesuse of a pose prior and instead search over all synthetic
an extended Kalman lIter (EKF) based solution while Eaderiews at each new image. This makes their algorithm capable
extends FAST-SLAM [5]. Klein performs mapping based orof localizing a stream of images that are not necessarily
keyframe bundle adjustment while separately tracking theequential. However, for the specic task of localizing a
camera motion by localizing to the current map using anoving camera we consider it important to include prior
position prior from a constant velocity motion model. pose information.

The localization portion of these methods is similar to Arth et al. [12] also seek to localize images in a map
our proposed tracking method. When a strong pose prior @eated using structure-from-motion. Their method divides
available, we actively search for known map features in thve map into “potentially visible sets'; discrete sets of feature
current image based on their expected location in the imageoints which, based on occlusion, are all visible from a given
Similar to [4], we then nd the estimated camera pose byocation. In indoor environments this often means that a room
minimizing the re-projection error between the image andill be considered a potentially visible set. They then require
map features. information from a GPS sensor, radio frequency (RF) beacon,

However, the scale of the maps that these techniques dealuser input to determine in which potentially visible set
with is fairly small. While they focus on localizing a camerathe camera currently is. The feature points within the given
within environments such as closed rooms, we focus gootentially visible set are then matched against the current
localizing a camera in an outdoor city-scale environmentmage to localize the camera. In this sense, the potentially
Furthermore, these methods rely on high-frame-rate shostisible sets are very similar to our proposed spatial clusters
baseline imagery in order to use patch-based features itothat they quickly allow one to reduce the quantity of visual
characterize points in the image. This is suf cient when théeatures considered for matching, based on a pose prior.

Il. RELATED WORK



Il. SYSTEM OVERVIEW

The rst step of our proposed method, Alg. 1, is a preAlgorithm 1 System Overview
processing stage in which the map is constructed from thRre-processing
raw data provided by the full sensor suite. During map 1. Extract visual SIFT features
creation we extract visual features from the environment,,. Track features through environment
currently SIFT [6], and then track these features as thes: Quantize features with vocabulary tree
fully instrumented robot moves through the environment. Wey. cCjuster features spatially
cluster features spatially, over thex, Y, Z position and 5. Syp-sample map based on “trackability’
, the a2|muth angle from which the feature was observeg)nline Localization
We then consider the number of frames a feature has been . .
successfully tracked over to select only the most “trackable”’’ Predict motion . .
features of each cluster to include in the map. This allows? Exiract and quantize visual S.IFT features
us to control map size and ensure good spatial coveragg Cull glusters -bas_ed on centroid
of the environment while maintaining the utility for visual * Identify putative image-to-map correspondences
localization. Additionally, we hierarchically cluster the visual 5 Determme gepmetr!cally consistent inliers (.RANSAC)
features extracted from the map images to produce a vocabif: Nonlinear optimization to produce pose estimate
lary tree that quantitizes the visual features in the map. Thig” Update lter
drastically reduces the memory required to store map features
and provides a rapid method for determining putative feature
correspondences. Map generation is discussed in detail in
Section V.
Given the map, we then seek to localize the instrumented
camera as it moves through the environment using a (linear)
Kalman lter (KF) (our plant and observation models are
linear as formulated). We use measurements from GPS and
orientation sensors to initialize the KF and supplement local-
ization in feature-poor regions of the environment. However,
for accurate localization we rely on the camera to provide
motion constraints. To do so we must rst associate the SIFT
features extracted from a given image with the features in the
map. We use the centroid of the spatial clusters to quickly (a) Map features.
determine which clusters could contain candidate features
based on the current estimate of the camera pose. We then
project these candidate map features into the image and
search for visual correspondence. We use the uncertainty in
the camera pose to geometrically constrain the location of
possible image-to-map correspondences. Then given a set of
putative correspondences we use random sample consensus
(RANSAC) [13] to identify geometrically consistent inliers.
Finally, we use non-linear optimization to determine a pose
constraint that is used to provide a linear update on state to
the lter. Localization is discussed in detail in Section V. (b) Map clusters.

IV. M AP GENERATION

The nal map consists oM spatial clusters of feature
points. Each cluster has a mean positign=[X; Y ;Z]>, - _ !
and a mean view azimuth,. The view azimuth is the - ’ \ R ’ -
azimuth angle of the vector that points from the center \ ! . T
of the cluster to the center of the camera from which the \ S N
features in the cluster were observed. Within each cluste, ) | ‘
Ci fori=1:::M, there areN; feature points. Each feature (c) Map clusters zoomed.
point, F{ for j = 1:::Nj, has an associated 3D location, _ _ _ _

o .o 1> . . h - d feat bul Fig. 2. A sample map built from d:36 km trajectory in an urban
_XJ =[X;Y;Z]", view azimuth, I an_ ea L_”e vocabulary environment is shown in (a). Each point is a different feature, the colors
id, v;. The feature vocabulary idj, is the id of the leaf are set by the cluster to which a feature belongs. A reduced map with only
node in the vocabulary tree to which the SIFT descriptor fofluster centroids and mean view azimuth vectors is shown in (b) with a

zoomed view in (C).

the feature corresponds. The steps used to produce the map
are as follows.



A. Feature Tracking

As the fully instrumented robot moves through the envi-
ronment it extracts SIFT features from each image it collects.
The features from sequential images are compared to pro-
duce a set of putative correspondences. From these putative
matches a set of inlier correspondences is determined by
tting a fundamental matrix using RANSAC. The inliers that
have been tracked between two images are considered as
possible map features.
As we continue processing features from sequential im-
ages we count the number of frames through which each
feature was tracked. A higher count indicates that the feature
was robust to view point change and, therefore, a goggy 3. sample vocabulary tree, with= 3 andL = 3 (only 2 of 128
choice for inclusion in the map. By normalizing this countdimensions shown).
by the maximum in the whole map, we produce a view
robustness score that varies between 0 and 1. In order
to produce a single descriptor for the feature we averad¥;Y;Z;X ¢; Yc]”, where, X andY, are the position of the
the descriptors from each image in which the feature wazamera that observed the feature. We then can calculate
detected and then nd the vocab tree leaf that corresponds after clustering based oX, Y, X andY,.
this averaged feature. This method, of tracking features overThe number of clusters is a function of map size and
multiple frames and averaging to determine the most robushvironment. We found that in an urban environment it was
features, was proposed by Kawewong et al. in [14] and hagceptable to automatically adjust the number of clusters
been shown to produce good results for place recognition 8o that the average number of features per cluster was
dynamic environments. v 200, where 200 is approximately the average number
Additionally, we must determine the location of the featuref features tracked between images during map building.
points in space with respect to a local coordinate framéig. 2(a) shows an example map collected over36 km
We assume the pose of the robot to be known with veryrajectory in an urban environment. Each point is a different
low uncertainty during the map construction phase. In oueature, the colors are set by the cluster to which a feature
experiments this comes from the fact that the robot is instriselongs. Fig. 2(b) contains a reduced map with only cluster
mented with a differential GPS and an extremely accuratentroids and mean view azimuth vectors shown (to reduce
inertial measurement unit (IMU). If we can project a rangelutter). One can see that nearby features will be separated
measurement from the laser scanner onto the feature in anyo distinct clusters if the features were originally viewed
of the images where it was observed, we use the laser scanfrem different locations.
measurement as the location of the feature. However, if
no 3D information from the laser scanner is available, the. Vocabulary Tree Generation
locations of the points can be triangulated from the camera

views using the accurate vehicle pose. Because triangulatior® Vocabulary tree [15] provides a method to quantize the

is inherently more noisy than the laser scanner, we rely dnap's visual features in order to reduce. the am.qunt of data
two heuristics to reduce noisy triangulations. First, as th&iat must be stored for each feature point. Additionally, the
fully instrumented robot has ve cameras during the datd€€ Provides a fast method to determine potential feature
collection phase, we only attempt to triangulate points in thgorrespondences because a new feature can be quantized
cameras that are not aligned with the direction of the motiolS'Ng & small number (_)f comparisons. ] )

of the vehicle. Second, we require that a feature be seen in1he vocabulary tree is produced by hierarchically cluster-

three or more sequential frames so that we can compute'd the visual features in the 128-dimensional SIFT feature
least squares solution for triangulation. space. Clustering is performed at each level using K-Means

to producek clusters, wherek is referred to as the branch

B. Spatial Clustering factor. Repeating this process for a set number of levels,

Given all the extracted features, we then seek to spatially, producesk" leaf nodes. Traversing the tree in order to
cluster the features. Clustering allows us to preserve goegiantize a feature descriptor requires okly comparisons.
spatial coverage when sub-sampling the map. The spatialFig. 3 illustrates two dimensions of a vocabulary tree
clustering also helps during localization by allowing us tavith k = 3 and L = 3. In practice, vocabulary trees
quickly reject a large number of clusters based on themay have hundreds of thousands to millions of leaf nodes
centroid location and mean view angle. We aim to cluster th@epending on the application and number of features used
features based on their locatidix,; Y; Z]>, and view angle, in training. The results in this paper were produced with

. However, clustering over the view angle,is problematic approximately 5 million training features yielding a relatively
as it is a circular quantity. Therefore, in practice, clusteringoarse vocabulary tree witk = 8 andL = 5 with 8 =
is performed using K-Means over a 5-dimensional spac82, 768 leaf nodes.



TABLE |
NUMBER OF FEATURES AND MAP FILE SIZE FOR SAMPLE TRAJECTORY

Number of Featureg File Size
Raw Data — 110 GB
Map after Feature Extraction 5,809,691 4.7 GB
Map after Tracking and Vocab 10 366,687 18 MB
Map after Sub-sampling 174,441 12 MB

D. Map Sub-sampling Fig. 4. Estimating potential clusters based on centroid and mean view
Even for short trajectories the size of the raw image an@zimuth. First, we eliminate clusters outsidg of the perpeptual radius (dc_;ttgd

LIDAR data collected by the fuly instrumented robot will be 23k 1) Secord, e emove clsters it a centrod tat does ot e

on the order of hundreds of gigabytes. By representing themean view azimuth that does not align with the camera’s view azimuth

map as a sparse collection of 3D points described by theffthin 45 are removed (dashed red lines). This leaves only the pose-

associated visual vocabulary we can discard the majority éfsboliia::t?onrgldate clusters (bold green) to consider when performing data

the image and LIDAR data producing maps on the order of

hundreds of megabytes in size. However, depending on the

memory limitations of the instrumented camera system, arnfX; Y; Z; 1] in 3D and projects it onto the image plane at

on the extent of the map, one may wish to further reduce the locationp = [u;v;w]> as shown in (1). The projection

le size of the map. By considering the view robustness scorgmatrix P = K[R j t] is composed of the intrinsic camera

(the normalized number of frames the feature was trackeflatrix K, and the extrinsic camera parametBrandt, that

over), we can rank the features within a cluster. We can thesapture the camera's rotation and translation.

sub-sample the map by selecting the “best” features from

each cluster until a predetermined memory limit. Note that p=PX 1)
t_hig is performed on a per-cluster basis. Given a memory 1) Visual Data Associationin order to correct our pre-
limit aT‘d the number of clusters in the map we Ca'C“'aF icted state using these camera measurements, we need
a maX|fmutm number ofbfeaturtlasdpgr cluiterfh_CIﬁstf[:rs m perform data association to establish a correspondence
n?any ca _uLes ari suf-sampe own Ob IS |rr|1| dWT'h‘f)etween SIFT features extracted from the image and features
cI:Jsters wit top ew heatures are .n|°t su —samp}eh. IR the map. A large map may have hundreds of thousands of
3 ows usbto malrl1_ta|n the good spatial coverage of the ma;?oint features. In order to avoid unnecessary computational
“?”gl S‘f 'Eamp':‘g-, or th g _costs, we rst wish to quickly eliminate highly unlikely
a eThs owsde S|ze”s ordtbe rr;1ap use blnldqur exset”}eature points. To do so we consider only the clusters'
ments. The raw ata} collected by the map building robot ig.4igs and mean view azimuths. First, we exclude clusters
0yer100 GB for the 1._36 km urban traje_ctory. By extracting whose centroid is beyond the “perceptual radius’ of the
visual features and dlsc_ardmg the raw Images and laser SCUFrent pose estimate. For our experiments the perceptual
we reduge the data size t417.G.B. By tracklng features radius was set td00 m—the maximum range of the laser
over multiple frames and describing them using a VOCQbUIa@’canner used to build the map. Second, we eliminate clusters
trede the map (?Sln bhe reer:ced 18 NIIJB_WItP further size with a centroid that does not lie in 80 cone in front
reduction possible through map sub-sampling. of the camera. Finally, we remove clusters with a mean
V. LOCALIZATION FILTER view azimgth that does_ not align yvith the cam.era‘_s view
The localization lter is used to track the state of theﬁa{ﬁ';még]n:rvgizg of4?h.eTrhelfngiﬁﬁzssrr:iégufé:jajig dlnslag:';ei' of
instrumen mer m through the map. r . . ' !
vesét(l)Jr E t:ed[ rc?a.\;a.?]f ys(t:?)ntatinsoﬁr?e éDe pogi?iomo u: Stacﬁjsters are projected into the camera frame. If they fall
RN o) s o . within a bound around the image then we consider the cluster
[X;y;z]”, Euler orientation = [r;p;h]”, linear velocity . :
v =[Xx;¥;z]> and Euler rates =[r; p;h]”, all with respect to\:)ve ?hcandldatet fo”r T?;Ch'fng't ints within th di
to a xed world coordinate frame. e then project all of the feature points within the candi-

Similar to Davison et al. [2], we use a constant velocitydate clusters onto the image plane and search for matching

constant angular velocity motion model. This model assumélgl?gedfeatures_ W|th|nfa:hne|ghborhood getermlned by the
that the camera is driven by unknown Gaussian distributef Ord€r covarance ot tné camera pose-

accelerations with a constant velocity over a single time 2z = Jy w(35) + 3% xx (3X)7; 2)
step. This unknown acceleration accounts for the unknown . .

dynamics of the system as well as the unknown control inpMtherez = [u;v]” are the pixel coordinates of the feature

to the instrumented camera system. andJ andJ{ are the Jacobians of the camera projection
) function, (1), with respect to the camera poge,and the
A. Camera Constraints feature's 3D coordinates{ , respectively. Fig. 5 depicts the

The camera observation model is the conventional pralata association procedure, with projected map points shown
jective camera model that takes a homogeneous poirt  as stars and image features shown as dots. The ellipse around



GPS. To build the map we use the full sensor suite with
data collected in the winter 2009. To test localization we
then use data collected with the same vehicle driving a
similar trajectory in fall 2010 and winter 2011. For local-
ization we use four of the cameras from the omnidirectional
system, excluding the forward looking camera. Additionally,
we consider attitude measurements from a consumer-grade
orientation sensor and position from a consumer-grade GPS.

A. Localization Results

The trajectories produced by our proposed algorithm are
shown in Fig. 6(a) and 6(b). At any given point in the trajec-
tory the size and color of the marker are proportional to the
spatial uncertainty in the state estimate. Spatial uncertainty

Fig. 5. Geometrically constrained correspondence search. Projected rﬁ§pde ned in terms of the determinate of theandy position
points are shown as stars and image features are shown as dots. The ellpe¥ariance as

roun h map feature represen n den nd on where th — 1=4.
feature Shouid I i the mage. | (nee bound on where fhe = (det )™ )
which has units of length. Sample imagery corresponding
to the numbered locations in the trajectories is shown in
each map feature represents tB8% condence bound g 6(c) through 6(h). These images illustrate some of the
on where the feature should lie based on the uncertainfy,jjanges presented by the data set including; low saliency
associated with projecting that 3D map pomF into the 'mag?egions, 6(c), changing structure and appearance, 6(d) and
A match between a map feature and an image feature &%), and poor lighting and exposure, 6(g) and 6(h). Even

established when an image feature from the same vocabulgfy(jer the best conditions, 6(e), visual matching must still
tree leaf as the map feature is found within the search eIhpsE:ontend with lighting changes.

Finally, we use RANSAC to select only those associations We see that our proposed method allows for low-

thazt are geometgcally 9°”S'St%”t- i of the d uncertainty localization for both the fall 2010 and winter
) Camera Observation UpdateAs a result of the data 2011 data sets. As one would expect, the snow present in

association step, we obtain a correspondence between {ig \yinter 2011 trajectory proves slightly more dif cult,

H - . >
image f(iaturesz N [u;v] ) and th.e map featurex especially in regions with less visually interesting features,
[X;Y;Z] . The projected pixel locations of the map featureguch as the leg around region 1

2 =[%;9]> are obtained from the model described in (1). We
then try to nd the state vecto® = [X; ¢;2;f p;A]”, that B. Map Sub-sampling Results

minimizes the re-projection error between image features a”dAdditionaIIy, we consider the effect of map sub-sampling

map points, as shown in (3), on the localization utility of a map. Fig. 7 compares the
_ ) u 0 moving average of spatial uncertainty for varying map sizes
g=argmin (5 4 ) () using the proposed sub-sampling method outlined in Sec.

IV-D. As one would expect, reducing the number of features

In our experiments the cost function is simply squared i%‘uthe map results in a higher average uncertainty. However,

error, howeve_r, a Huber [16]. cost function could be USEQen after removing approximately half of the map's features,
to reduce the in uence of outliers. We solve for the optimal

! L ) isual tracking still provides a substantial reduction in spatial
pose using the Levenberg-Marquardt optimization algonthmuncertainty 9 P P

The rst-order approximation of the covariance of the esti- During development we also considered sub-sampling
mated state is given by based on the visual uniqueness of features within a cluster.
S . . . ) .
a2 = (Jy ppljx) 1 (4) In order to identify features tha_t may be wsuglly aliased in
) ) _ ) a local area, we computed a simple local saliency scgre,
whereJ, is the Jacobian of the cost function with respector each feature with respect to its spatial cluster. Using the
to state, and p, is the covariance of the pixel coordinatesyocabulary id for the visual features we consider, for each
of the extracted features, commonly assumed to be isotrogigature in a spatial cluster, the ratio between the number
with unit variance. of features from the same vocab in that spatial cluster
VI. EXPERIMENTAL RESULTS Nsame vocab » and the total number of features in the spatial

. . .Cluster,nya . The local saliency scors, is then de ned as
In order to evaluate our algorithm in a real-world scenario

we present results using the Ford Campus Vision and LIDAR s=1 Nsame vocab (6)
Data Set [17]. This data set was collected with Ford's Ntotal

autonomous ground vehicle testbed (Fig. 1) out tted with amvhere s varies between 0 and 1 with visually repetitive
omni-directional camera, professional IMU and differentiafeatures receiving low scores.



(a) Fall 2010 trajectory. (b) Winter 2011 trajectory.

(c) Sample images 1. (d) Sample images 2. (e) Sample images 3.

(f) Sample images 4a. (g) Sample images 4b. (h) Sample images 5.

Fig. 6. Experimental results. (a) and (b) show the trajectory produced by our algorithm using data from 2010 and 2011. At any given point in the
trajectories the size and color of the marker are proportional to the spatial uncertaintyxy gtate estimate. Sample imagery from the map and both
localization sets corresponding to the numbered locations in the trajectory are shown in (c)-(h). These images illustrate some of the challenges presented
by the data set including; low saliency regions, (c), changing structure and appearance, (d) and (f), and poor lighting and exposure, (g) and (h). Even under
the best conditions, (e), visual matching must still contend with lighting changes.

Fig. 8. Average spatial uncertainty is plotted for varying map sizes using
the proposed view robustness sub-sampling method (IV-D), saliency based,
and néve random sub-sampling.

Fig. 7. Effect of map sub-sampling: a moving average of the spatial

uncertainty is plotted for varying map sizes.

sights into the proposed algorithm. First, we note that through

Comparing our proposed method, Sec. IV-D, local saliencgluster-based feature culling (Fig. 4) and geometrically con-
and néve random sub-sampling, Fig. 8, we see that fostrained correspondence search (Fig. 5) we greatly reduce the

a given map size our proposed view-robustness methedfect of visually aliased features in the environment. This
provides a substantial reduction in localization uncertainty.alone, however, does not explain why saliency sub-sampling

Additionally, we note that local saliency sub-samplingshould perform worse than random. In fact we found that
systemically performs worse than random sub-samplingaultiple instances of the same feature can be added to the
Though unexpected, this result provided two interesting imnap. This happens during map construction when a feature



structed from co-registered 3D LIDAR and omnidirectional
image data. Our method intelligently sub-samples the rich 3D
LIDAR and image data to produce a compact map of visual
features that are both robust to varying view point and that
are visually salient. We demonstrated the use of vision-based
localization to track an auxiliary camera's motion through the
map. and the ability of the algorithm to localize in a map
built with real-world data collected over multiple years.
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